Deepwater Asset Optimization using Performance Forecasting

PETRONAS-PETRAD-INSTOK-CCOP Deepwater Workshop

Alex Tan
24th - 26th January 2011
PERFORMANCE FORECASTING
What is Performance Forecasting?

Reliability
- Equipment performance data i.e. Mean Time To Failure (MTTF), Mean Time To Repair (MTTR)
- System configuration & redundancy e.g. 2 x 50%, 2 x 100%

Maintainability
- No. of maintenance resources
- Shift constraints
- Mobilization delays
- Spares constraints

Availability
- Equipment / System Uptime e.g. 95%

Operability
- Ramp-Up / Restart times
- Flaring constraints
- Production / Sales demand
- Storage size
- Tanker Fleet and Operations

Production Efficiency
- Achieved production
- Production losses
- Criticality
- Contract shortfalls
- Flared volumes

Unit Costs/Revenue
- Product price
- Manhour / spares costs
- Transport costs
- Discount rates

Net Present Value
- Lost Profit Opportunity
What is Production Efficiency?

PRODUCTION EFFICIENCY = \frac{\text{Actual Production}}{\text{Potential Production}} \times 100\%
Why Performance Forecasting?

1. Predict achieved production and **deferment** over life

2. Predict **intervention requirements** and **maintenance utilisation** over life

Optimum development option should not just be decided by CAPEX!
Why use dynamic simulation for Performance Forecasting?

- Timing of failure may affect repair duration
- Explicit modelling of weather impacts depending on season
- Correctly reflect delayed production impact of certain failures
- Potential delay of repairs because of back-log
- Reflect system changes over time
- Use any type of failure distribution for equipment items
- Capture probability of multiple failures in 2x100% systems
- Reflect actual intervention strategy: when do you intervene?
- Track use & availability of spares – with potential delays
When can it be applied?

<table>
<thead>
<tr>
<th>Concept</th>
<th>Design</th>
<th>Operations Optimisation</th>
</tr>
</thead>
</table>
| ▪ Compare performance of various development options
 ▪ New technology (e.g. subsea separation vs. multiphase pumping)
 ▪ Impact of spare wells
 ▪ Subsea to beach vs. Subsea to shallow water platform | ▪ Define minimum availability targets for specific equipment to meet project target
 ▪ OPEX forecasting for project economics
 ▪ Intervention vessel workload for medium to long term planning | ▪ What is the optimum intervention strategy?
 ▪ What is the impact of improving intervention response times?
 ▪ How many capital spares should I keep?
 ▪ What will be the impact of ageing facilities / wells on achieved performance? |
DEEPWATER CASE STUDY
Deepwater Case Study

Overview

Development located at 800 m water depth

Conventional subsea production wells

Production to host facility

Flowlines, risers and control umbilicals

Sand control subsea production wells
Deepwater Case Study

Objectives

- What questions need to be answered?
 - What is the expected production efficiency and associated revenue loss?
 - What are the major contributors to production deferment?
 - What are the expected intervention vessel requirements and associated OPEX throughout field life?
 - Should we drill an additional well to achieve N+1 configuration?
 - Should we install redundant control jumpers?

- What data do we need?
 - Equipment performance data i.e. failure and repair data
 - Well production forecast
 - Intervention vessel data e.g. response times, ad-hoc vs. contract
 - Economic parameters e.g. vessel day rates, oil price
 - Others e.g. weather impacts, operational philosophy, planned intrusive maintenance
Deepwater Case Study
Input: Subsea

Subsea Sand Control Well

Umbilical & Riser

Subsea Production Manifold & PLET

Dry Tree Unit
Deepwater Case Study

Input: Production Profile

- All wells are online and producing throughout field life
- Assume equal production from all wells – no spare capacity i.e. system is well constrained
- Assume that oil deferment results in plateau & field life extension

Oil production profile
Total recoverable reserves: 394 MMbbls
Deepwater Case Study
Input: Topsides

Dry Tree Unit Systems
Deepwater Case Study
Input: Intervention

Subsea Equipment
- Tubing
- SCSSV
- Sand Screen
- Tree Valves
- Choke Valves
- Jumpers
- Subsea Control Module
- Flying Leads
- etc.

Intervention Vessels
- Drilling Rig
- Remote-Operated Vessels (ROVs)
- Diving Support Vessel (DSV)
- Light Weight Intervention Vessel (LWIV)
- Multipurpose Support Vessel (MSV)
- etc.
Deepwater Case Study
Input: Reliability Data for Subsea Equipment

- Challenges exist in obtaining best-in-class reliability data:
 - Low failure rates (equipment designed to last field life / fault tolerant)
 - Not all failures require intervention – function of failure impact and intervention cost
 - Most detailed databases are not public domain

- Typical data sources:
 - Subsea subsurface – generic well data can be considered
 - Wellmaster (SINTEF / EXPROSOFT)
 - SINTEF reports (SSSV, completions, well valves)
 - In-house operator databases
 - Subsea surface facilities:
 - OREDA VII Subsea / OREDA 2009
 - Subsea Master
 - In-house operator databases
Deepwater Case Study
Deliverables: Production Efficiency

- Through-life performance: 96.3% (174.4MMbbls/year)
- As result of deferment, the decline profile is delayed and production must continue for further 1.5 years to recover all oil from base case profile
Deepwater Case Study
Deliverables: Equipment Criticality

- Equipment criticality: 3.7% absolute losses (6.7MMbbls/year)
- What are the causes of these losses?
Deepwater Case Study
Deliverables: Rig Utilization

- Number of drilling rig utilization days per year by equipment type translates into OPEX through vessel day rates.
- Rig utilization increases gradually up to 75 days per year as well equipment items wear-out.
Deepwater Case Study
Deliverables: ROV Utilization

Predicted ROV Vessel Utilization

- **Average predicted annual OPEX for subsea interventions (ROV and drilling rig) is $11million.**
- **Increases gradually from $6million / year at start of life until $15million/year later in life.**

Predicted Average Utilization per Annum

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Nr of Mobilisations</th>
<th>Nr of Activities</th>
<th>Annual Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rig</td>
<td>0.74</td>
<td>1.7</td>
<td>51.0</td>
</tr>
<tr>
<td>ROV</td>
<td>2.5</td>
<td>5.0</td>
<td>26.1</td>
</tr>
</tbody>
</table>
Deepwater Case Study
Sensitivity Case 1

- **Base Case:**
 - Non-redundant subsea control jumpers

- **Sensitivity Case:**
 - Dual redundant control jumpers. Control pods able to switch supplies automatically

 +0.2% in production efficiency (~ +0.04MMbbls/yr) due to reduced downtime associated with failed control jumper

 Reduction in the predicted number of ROV interventions

 Savings far exceed the increase in CAPEX associated with installing new control jumpers.
Deepwater Case Study
Sensitivity Case 2

- The base case assumes no spare well capacity
 - **Pro**: Minimum CAPEX
 - **Con**: Any production well outage results in immediate deferment i.e. system is well constrained

- What would be the impact on project economics if a spare production well could be included at a cost of $20 Million?

Define identical production well to achieve N + 1 configuration
Deepwater Case Study
Sensitivity Case 2

- Sensitivity model with spare well predicts:

<table>
<thead>
<tr>
<th>Cost</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial CAPEX investment of $20 million</td>
<td>Average production efficiency increases by 3.3%, effectively</td>
</tr>
<tr>
<td>OPEX increases marginally by 8% due to increased intervention</td>
<td>mitigating for all single production well outages.</td>
</tr>
</tbody>
</table>

- Overall project NPV improves by $35 Million (including impact of upfront $20million well cost).

- In conclusion, addition of spare well at $20 Million is a robust improvement option at given oil price:
 - Only with oil price less than $50/bbl can the spare well no longer be justified.
Summary

- Subsea performance forecasting using dynamic simulation (MAROS) is a proven technique.

- It has been successfully applied by DNV for more than 10 years:
 - BP (all UKCS and GoM subsea assets)
 - Shell (GoM, WoA, Malampaya)
 - ChevronTexaco (most WoA & GoM assets)
 - ExxonMobil (WoA assets, Bass Strait)

- Even with data uncertainty, methodology can still be applied successfully in comparative analysis

- Performance forecasting can provide operators with innovative, value added solutions to asset and risk management problems from concept selection through detailed design.
DNV Subsea PF Experience

- BP - Thunder Horse Development
- BP - Atlantis Development
- BP - Mad Dog Development
- BP - Neptune Development
- BP - Mica Topsides
- BP - Marlin Area
- BP - King / Kings Peak
- BP - Shell Na Kika Development
- BP - Holstein Development
- BP - Horn Mountain Development
- BP - Foinaven
- BP - Schiehallion
- Chevron - Agbami Development
- Chevron - Tahiti
- Chevron - Benguela Belize
- Chevron - Lobito Tomboco
- Chevron - Jack/St Malo
- Chevron - Hebron Development
- Chevron - Frade Development
- Chevron - Kuito Development
- ConocoPhillips - Belanak Development
- ExxonMobil - Erha Development
- ExxonMobil - Yoho Development
- ExxonMobil - Kizomba A & B
- ExxonMobil - Pluto
- Shell - Bonga Main
- Shell - Bonga South West
- Shell - Malampaya
- Shell - Osprey
- Shell - Gannet
- Shell - Pelican
- Shell - BC10
- Shell - Gumusut
- Shell - Malikai
- Statoil / Hydro - Ormen Lange
- Statoil / Hydro - Asgard
- Statoil / Hydro - Gjoea
- Enterprise - Corrib
- Enterprise - Bijupira Salima
- Petrobras - Chinook/Cascade
Safeguarding life, property and the environment

www.dnv.com