Petroleum Resource Assessment and Risking

Knut Henrik Jakobsson
CCOP Chiang Mai February 2011
Gunnar V. Søiland
Norwegian Petroleum Directorate
Key questions:

- How much oil and gas?
- Where are the resources?
- When will they be found?
- When can they be produced?
Oil - proved reserves:

553.8 million bbl (1 January 2008)

Oil - proved reserves This entry is the stock of proved reserves of crude oil in barrels (bbl). Proved reserves are those quantities of petroleum which, by analysis of geological and engineering data, can be estimated with a high degree of confidence to be commercially recoverable from a given date forward, from known reservoirs and under current economic conditions.
Oil in Timor-Leste

By Guteriano Nicolau and Charles Scheiner, La’o Hamutuk
September, 2005

<table>
<thead>
<tr>
<th>Name of field Operator*</th>
<th>Location</th>
<th>%TL under treaties</th>
<th>Status</th>
<th>Total oil reserve million barrels</th>
<th>Total gas reserve trillion cubic feet</th>
<th>Oil already produced million barrels</th>
<th>Gas already produced trillion cubic feet</th>
<th>Total carbon in reserve million metric tons C</th>
<th>Carbon already released million metric tons C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater Sunrise Woodside</td>
<td>20% in JPDA, rest claimed by both countries.</td>
<td>50%</td>
<td>On hold until boundary or other agreement is finalized.</td>
<td>290</td>
<td>7.7</td>
<td>0</td>
<td>0</td>
<td>233</td>
<td>0</td>
</tr>
<tr>
<td>Bayu-Undan Conoco-Phillips</td>
<td>JPDA</td>
<td>90%</td>
<td>Began production in 2004; TL’s principal income.</td>
<td>400</td>
<td>3.4</td>
<td>20</td>
<td>0</td>
<td>135</td>
<td>2</td>
</tr>
<tr>
<td>Buffalo Nexen (was BHP)</td>
<td>JPDA</td>
<td>90%</td>
<td>In production 1999-2004, now being decommissioned.</td>
<td>31</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elang-Kakatua Conoco-Phillips</td>
<td>JPDA</td>
<td>90%</td>
<td>Began production in 1998; nearly exhausted.</td>
<td>56</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Laminaria-Corallina Woodside</td>
<td>Just outside JPDA; claimed by TL & Australia. Occupied by Australia.</td>
<td>0%</td>
<td>Began production in 1999; mostly depleted. Australia has taken $1.2 billion in revenues.</td>
<td>210</td>
<td>0</td>
<td>167</td>
<td>0</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>61%</td>
<td></td>
<td></td>
<td>987</td>
<td>11.1</td>
<td>268</td>
<td>0</td>
<td>403</td>
<td>31</td>
</tr>
</tbody>
</table>

* In addition to companies which operate projects, joint venture partners in these fields include Royal Dutch Shell, Santos, Inpex, Osaka Gas, Tokyo Electric, Palacin and Agip.
* These fields started production under the illegal Timor Gap Treaty. The revenue split and ownership has changed twice since 1999.

TL reserves: (987-268)*61% = 438 mmbbl (??)
Timor-Leste (East Timor) Energy Profile

Last Update: June 30, 2010 (All Fuels) | July 14, 2010 (Petroleum)
Next Update: August 1, 2010 (All Fuels)
For the most recent data, please visit [International Energy Statistics](#)

Data

Petroleum (Thousand Barrels per Day)

<table>
<thead>
<tr>
<th>Data</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Oil Production</td>
<td>100.01</td>
<td>96.27</td>
</tr>
<tr>
<td>Crude Oil Production</td>
<td>100.01</td>
<td>96.27</td>
</tr>
<tr>
<td>Consumption</td>
<td>2.30</td>
<td>2.50</td>
</tr>
<tr>
<td>Net Export/Imports(-)</td>
<td>97.71</td>
<td>93.77</td>
</tr>
<tr>
<td>Total Oil Exports to U.S.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Refinery Capacity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Proved Reserves (Billion Barrels)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Map of Timor-Leste (East Timor)

Country Analysis Brief

No report available at this time.

[View list of countries with a Country Analysis Brief >>](#)
- Bayu Undan 4Tcf – 550 MMbbls
- Chuditch 0.7 TCF
- Elang Kakatua-Kakatua North 33 MMbbls
- Greater Sunrise 7.7 Tcf – 300 MMbbls
- Jahal gas
- Kelp Deep 8.4 – 13.6 Tcf
- Kitan 40 MMbbls
- Kuda Tasi 20 MMbbls
- Troubadour gas

TOTAL: 23.4 Tcf 943 MMbbls
National resource management - includes many aspects, but:

- For the macro economic planning governments need to know
 - Future production, investments and costs
 - The full resource base – discovered and undiscovered resources
 - Environmental aspects of the petroleum activity
- Companies report data to NPD annually as part of the National Budget process
- Classification of the petroleum quantities is vital for the reporting process and for the subsequent analysis of the data
Petroleum resource classification; a tool to serve -

- Needs in International Energy Studies – *international policy formulation*
- Needs in Resource management at National level – *optimizing values*
- Needs in Business Process Management – *exploration and production*
- Needs in Financial Reporting – *capital cost*

- Many different classification systems
- No single global system - yet
NPD’s petroleum resource classification

- NPD has used **project based** classification since 1992
- Only **recoverable** quantities are classified
- Basis on **Maturity of projects** to produce petroleum
 - prospect → discovery → field → produced volumes
- One field can have several production projects of different maturity, i.e. petroleum quantities relating to the different projects will be classified in different categories.
NPD’s classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Project category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic prod.</td>
<td>Sold and delivered</td>
</tr>
<tr>
<td>Reserves</td>
<td>In production</td>
</tr>
<tr>
<td></td>
<td>Approved PDO</td>
</tr>
<tr>
<td></td>
<td>Decided for development</td>
</tr>
<tr>
<td>Contingent resources</td>
<td>In the planning phase</td>
</tr>
<tr>
<td></td>
<td>Recovery likely, but undecided</td>
</tr>
<tr>
<td></td>
<td>Recovery not very likely</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
</tr>
<tr>
<td>Undiscovered resources</td>
<td>Prospects</td>
</tr>
<tr>
<td></td>
<td>Plays</td>
</tr>
</tbody>
</table>

F = First, A = Additional
NPD, SPE PRMS and UNFC

SPE PRMS 2007

<table>
<thead>
<tr>
<th>Production</th>
<th>Project Maturity sub-classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESERVES</td>
<td>On Production</td>
</tr>
<tr>
<td></td>
<td>Approved for Development</td>
</tr>
<tr>
<td></td>
<td>Justified for Development</td>
</tr>
<tr>
<td>CONTINGENT RESOURCES</td>
<td>Development Pending</td>
</tr>
<tr>
<td></td>
<td>Development unclarified or on Hold</td>
</tr>
<tr>
<td></td>
<td>Development not Viable</td>
</tr>
<tr>
<td>Unrecoverable</td>
<td></td>
</tr>
</tbody>
</table>

NPD 2001

<table>
<thead>
<tr>
<th>Project status category</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2 F/A</td>
</tr>
<tr>
<td>3 F/A</td>
</tr>
<tr>
<td>4 F/A</td>
</tr>
<tr>
<td>5 F/A</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7 F/A</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Prospect

- Lead
- Play
Reserves are like fish (H.E. Te Duong Tara, Cambodia)

- **Developed**
 - The fish is in your boat.
 - You have weighed it, you can smell it and you will eat it.

- **Discovered — but not yet developed**
 - The fish is on your hook in the water by your boat and you are ready to net it.
 - You can tell how big it looks (they always look bigger in the water).
Reserves are like fish

Prospective
- There are fish in the lake and you may have caught some yesterday.
- You may even be able to see them, but you have not caught any today (yet).

Speculative
- There is water in the lake and someone may have told you that there are fish in the lake.
- You have your boat on the trailer but you may go golfing instead.
Contingent resources are also like fish

Has all the same physical certainty categories, but you can't catch, sell, or eat the fish because:

- **Market/ Infrastructure**
 - The whole country is totally vegetarian.
 - There are no refrigerated trucks to get the fish to market.

- **Political**
 - You don't have a fishing license.
Reliably assessing the resource base must be the basis for:

- National financial strategies and budgeting
- Legislation and tax regulations
- Promotion, licensing and contracts
- Investment strategies
Resource Management in Norway

Resource management of petroleum resources shall be carried out in a long-term perspective for the benefit of the Norwegian society as a whole.

In this regard the resource management shall provide revenues to the country and shall contribute to ensuring welfare, employment

(The Petroleum Act - Section 1-2)
Article 6

Exercise by the Ministry of its competencies and functions

1. The Ministry shall exercise its competencies and functions under the present Law, including under Authorisations granted hereunder, in such a manner as:

(a) to ensure a balanced and **sound resource management**;

(b) to ensure that Petroleum is exploited and developed in a way that minimises damage to the environment, is **economically sustainable**, promote further investment and contributes to the **long-term development of Timor-Leste**;
Industry and Society – Different objectives!

Industry focus

- Short-term profits
- Business Unit / company / licence
 - Internal effects
 - High NPV-requirements (materiality / limited capacity)
 - Private information
- Post-tax

Society - focus

- Long-term resource management
- Focus across licences
 - External effects
 - Positive NPV / marginal projects
- Sharing information
- Pre-tax
Resource account for Norwegian shelf

Systematic analysis based on all data acquired

Published on paper and internet
Resource overview as of 31 December 2009

Expected recoverable

- Produced: 5.3 bill Sm³ o.e.
- Remaining proven: 4.8 bill Sm³ o.e.
- Undiscovered: 3.3 bill Sm³ o.e.
 (1.6 - 5.8 bill Sm³ o.e)

--

- 65 fields in production
- 8 fields being developed
- 82 discoveries under evaluation
- ~290 projects for improved recovery in existing fields

Expected recoverable = ~13 bill Sm³ o.e.

Uncertainty range: 10-16 bill Sm³ o.e.
Recoverable petroleum resources – RNB2010

Uncertainty of estimates:
- Low estimate (P90) to the left, mean value and high estimate (P10) to the right.

Distribution of the total resources (13.4 bill. Sm³ o.e.):
- Undiscovered resources: 24%
- Contingent resources in discoveries: 40%
- Possible measures for increased recovery: 5%
- Contingent resources in fields: 25%
- Reserves: 24%
- Sold and delivered: 5%

Total resources: 5.3

Produced:
- Remaining: 11.7
- Total: 8.1

Bill. Sm³ o.e.
Recoverable liquid resources – RNB 2010

Uncertainty of estimates

Low estimate (P90) to the left, mean value and high estimate (P10) to the right

Distribution of liquid resources*
(7.3 bill. Sm³ o.e.)

- Undiscovered resources
- Contingent resources in discoveries
- Possible measures for increased recovery
- Contingent resources in fields
- Reserves
- Sold and delivered

* Liquid includes oil, NGL and condensate

OD 1002014
Production Historic and Prognosis to 2030
Remaining oil in place

- 60 fields
- 73 discoveries
- Undiscovered

MSm3

P 50
Investments in the Petroleum sector historic and forecast

\[\text{Millioner 2008-NOK} \]

- **2007**:
 - Letteaktivitet: 80,000
 - Rør og landanlegg: 40,000
 - Funn: 20,000
 - Felt: 60,000

- **2008**:
 - Letteaktivitet: 80,000
 - Rør og landanlegg: 40,000
 - Funn: 20,000
 - Felt: 60,000

- **2009**:
 - Letteaktivitet: 80,000
 - Rør og landanlegg: 40,000
 - Funn: 20,000
 - Felt: 60,000

- **2010**:
 - Letteaktivitet: 80,000
 - Rør og landanlegg: 40,000
 - Funn: 20,000
 - Felt: 60,000

- **2011**:
 - Letteaktivitet: 80,000
 - Rør og landanlegg: 40,000
 - Funn: 20,000
 - Felt: 60,000

- **2012**:
 - Letteaktivitet: 80,000
 - Rør og landanlegg: 40,000
 - Funn: 20,000
 - Felt: 60,000

- **2013**:
 - Letteaktivitet: 80,000
 - Rør og landanlegg: 40,000
 - Funn: 20,000
 - Felt: 60,000
Promotion

WHY NORWAY?

Offshore Norway; an area with large remaining petroleum resources

Norway ranks as the world’s third largest exporter of oil and gas. Oil production (including NGL and condensate) stands at about 2,8 million barrels per day and net gas production exceeds 3 tcf a year. The first exploration well was drilled in 1966 and since then 1100 exploration wells have been drilled, proving 60 billion barrels o.e. of recoverable resources. The average technical discovery rate is about 40 %. The mean estimate for the undiscovered resources is 21 billion barrels o.e. of recoverable resources, equivalent to the quantity that has been produced to date.

The Norwegian exploration policy has favoured a sequential opening of exploration areas through licensing rounds. As a result, the Norwegian continental shelf can offer opportunities for different categories of companies, and companies may establish a balanced portfolio of acreage in mature areas, frontier areas and virgin areas. The last two categories still have potential for making huge discoveries.

The Norwegian continental shelf may be divided into three main petroleum provinces; the North Sea, the Norwegian Sea and the Barents Sea. These areas differ in geology and exploration maturity. The North Sea is the most mature, having a well-developed infrastructure for production and transportation. The eastern part of the Norwegian Sea is relatively well known as several fields are in production, whereas the deep-water areas are less explored, thus representing frontier exploration areas. The Barents Sea has been successfully explored in the south, but there are vast virgin areas in the eastern and northern parts, where geological data indicate large structures with petroleum potential.
A difficult task…

Assessment of undiscovered oil and gas resources is a difficult task.

Satisfactory results can only be obtained on the basis of all our knowledge and by using all data and suitable statistical methods.
Reporting of data in Norway

(31 Operating companies)

Operating companies report annually to NPD data and forecasts on:
- Resources
- Production
- Investments
- Emission
Geologic knowledge
Reservoir knowledge
Knowledge on sedimentary deposits
GEOLOGICAL FACTORS NECESSARY FOR THE PRESENCE OF OIL AND GAS

- **TRAP**
 - sealed geometric form

- **RESERVOIR ROCK**
 - sandstone and limestone

- **MIGRATION PATHS**
 - hydrocarbon migration into the trap from mature [i.e. hydrocarbon generating] source rock (kitchen)

- **SOURCE ROCK**
 - claystone rich on organic material

- Correct **timing** of these factors
DIFFERENT TYPES OF TRAPS FOR OIL
The Volumetric Function

Producible oil volume =
Gross Rock volume x
N/G ratio x
porosity x
Hydrocarbon saturation x
Formation volume factor x
Recovery factor
2D Seismic

2D seismic data are displayed as a single vertical plane or cross-section sliced into the Earth beneath the seismic line's location.

2D is generally used for regional reconnaissance, or for detailed exploration work where economics may not support the greater cost of 3D...
SOMETIMES IS IT POSSIBLE TO SEE HYDROCARBONS WITH SEISMIC – BUT NOT ALWAYS!
Seismic data acquisition
Estimating undiscovered resource volumes by statistical methods – play modelling

A Petroleum play is:

• Geographically and stratigraphically delimitated area.

• Specific set of geological factors; reservoir, trap, source.

• Confirmed play: discovery.

• Unconfirmed play: no discovery. The play is risked.
Statistical modeling

Input data:

- Number of prospects
- Discovery rate
- Petroleum properties

Size distribution

Reservoir properties

Assessment software:

Data processing

Results: Number and size distribution of future discoveries, volume of oil, gas and condensate.
Reliably assessing the resource base takes:

1. Hard work
2. Skilled civil servants
3. Functional government institutions

- May require assistance from cooperating countries
- May require use of independent consultants
Without knowing the resource base I may face:

1. Poor national policy and strategy
2. Inefficient legislation and tax regulations
3. Poor promotion and bad contracts
4. Poor investment strategies
5. Developments and production rates that are not optimal for the country
6. Lost revenue.
Thank you for your attention!

www.npd.no