

Site selection and qualification

Roman Berenblyum

Research Director, Field Studies and New Recovery Technology International Research Institute of Stavanger

December 10, 2012

- > Independent research institute with a 40 years of history
- > > 150 scientists (> 60% with PhD) in Energy, Social Sciences and Environmental Studies
- Main topis in Energy department are drilling automation and multiphase reservoir flow
- > Have own lab and full scale drilling test / evaluation rig
- > CCUS is a logical extension of our key expertise
- National and international projects and partnerships for more than 10 years

- > Independent research institute with a 40 years of history
- > > 150 scientists (> 60% with PhD) in Energy, Social Sciences and Environmental Studies
- Main topis in Energy department are drilling automation and multiphase reservoir flow
- > Have own lab and full scale drilling test / evaluation rig
- > CCUS is a logical extension of our key expertise
- National and international projects and partnerships for more than 10 years

- > Independent research institute with a 40 years of history
- > > 150 scientists (> 60% with PhD) in Energy, Social Sciences and Environmental Studies
- Main topis in Energy department are drilling automation and multiphase reservoir flow
- > Have own lab and full scale drilling test / evaluation rig
- > CCUS is a logical extension of our key expertise
- National and international projects and partnerships for more than 10 years

- > Independent research institute with a 40 years of history
- > > 150 scientists (> 60% with PhD) in Energy, Social Sciences and Environmental Studies
- Main topis in Energy department are drilling automation and multiphase reservoir flow
- > Have own lab and full scale drilling test / evaluation rig
- > CCUS is a logical extension of our key expertise
- National and international projects and partnerships for more than 10 years

- > Independent research institute with a 40 years of history
- > 150 scientists (> 60% with PhD) in Energy, Social Sciences and Environmental Studies
- Main topis in Energy department are drilling automation and multiphase reservoir flow
- > Have own lab and full scale drilling test / evaluation rig
- > CCUS is a logical extension of our key expertise
- National and international projects and partnerships for more than 10 years

- Independent research institute with a 40 years of history
- > > 150 scientists (> 60% with PhD) in Energy, Social Sciences and Environmental Studies
- Main topis in Energy department are drilling automation and multiphase reservoir flow
- > Have own lab and full scale drilling test / evaluation rig
- > CCUS is a logical extension of our key expertise
- National and international projects and partnerships for more than 10 years

- > Where to begin
- > First screening
- > Data and information needed
- > Tools and expertise needed
- > Sample workflow
- Concluding remarks

- > Where to begin
- > First screening
- > Data and information needed
- Tools and expertise needed
- > Sample workflow
- Concluding remarks

- > Where to begin
- > First screening
- Data and information needed
- Tools and expertise needed
- > Sample workflow
- Concluding remarks

- > Where to begin
- > First screening
- > Data and information needed
- > Tools and expertise needed
- > Sample workflow
- Concluding remarks

- > Where to begin
- > First screening
- > Data and information needed
- > Tools and expertise needed
- > Sample workflow
- Concluding remarks

- > Where to begin
- > First screening
- > Data and information needed
- > Tools and expertise needed
- > Sample workflow
- > Concluding remarks

Important note



Here we are talking about site selection and qualification for particular project, not in general!

Things like this are great to have

Launched by the Minister of Petroleum and Energy December 13th 2011

Objectives and requirements

- Find the safe and effective areas for storage of CO₂
- > No interference with the petroleum activity
- Build on the accumulated knowledge from the Norwegian petroleum activity
- > Build on the experience we have with storage of CO2
- Mapping and volume calculations should be verifiable
- The work will define relevant storage areas and estimated storage capacities
- The evaluation will form the basis for any terms and conditions set for a development of a storage site

- > Think full cycle: Capture Transport Utilization Storage
- > Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- > Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- > Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Think full cycle: Capture Transport Utilization Storage
- Many sides involved: Emitting, transporting and storing industries, government, community
 - Legislation
 - Responsibility transfer
 - Cost sharing
 - Public acceptance
- > Location of sources and potential storage sites
 - Transport: materials (stream composition)
 - Transport: costs

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
- > Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
- Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
- > Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- > Depleted fields vs aquifers
 - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
- Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- > Depleted fields vs aquifers
 - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
 - Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- > Depleted fields vs aquifers
 - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
- Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- > Depleted fields vs aquifers
- lechnological questions

- Data availability
- Geological and geophysical properties
- Uncertainties and risks during capacity evaluation
- Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- > Depleted fields vs aquifers
 - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
- > Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

- > Interference with other industries:
 - Landuse: Farming? Production? Residential?
 - Offshore: Fishing? Oil and gas?
- Depleted fields vs aquifers Technological questions
 - Data availability
 - Geological and geophysical properties
 - Uncertainties and risks during capacity evaluation
- Injectivity
 - Uncertainties in properties, other effects
- > Storage safety
 - Migration paths, potential leakage scenarios

Previous two slides is a long list of complex questions

There is no industry pull to develop technology at the moment

Legislation, costs, acceptance, technological gaps all provide challenges

To resolve this

- Technological push via governmental involvement and research commitment
- Synergy between R&D entities, across industries, and national borders

Previous two slides is a long list of complex questions

There is no industry pull to develop technology at the moment

Legislation, costs, acceptance, technological gaps all provide challenges

To resolve this:

- Technological push via governmental involvement and research commitment
- > Synergy between R&D entities, across industries, and national borders

Previous two slides is a long list of complex questions

There is no industry pull to develop technology at the moment

Legislation, costs, acceptance, technological gaps all provide challenges

To resolve this

- Technological push via governmental involvement and research commitment
- Synergy between R&D entities, across industries, and national borders

Screening

Previous two slides is a long list of complex questions

There is no industry pull to develop technology at the moment

Legislation, costs, acceptance, technological gaps all provide challenges

To resolve this:

- > Technological push via governmental involvement and research commitment
- Synergy between R&D entities, across industries, and national borders

Screening

Previous two slides is a long list of complex questions

There is no industry pull to develop technology at the moment

Legislation, costs, acceptance, technological gaps all provide challenges

To resolve this:

- > Technological push via governmental involvement and research commitment
- Synergy between R&D entities, across industries, and national borders

CCS fulfils ecological goal, but "wastes" energy used to compress CO_2 and it's effectiveness to displace oil.

EOR recovers more oil and would help to at least partially pay for storage

Problem is

- Anthropogenic CO₂ would come over long period of time at constant rate (t/year)
- > CO₂ EOR process requires less and less CO₂ as it stars to be backproduced and cycled
- There must be large scale storage project supporting several EOR applications

CCS fulfils ecological goal, but "wastes" energy used to compress CO_2 and it's effectiveness to displace oil.

EOR recovers more oil and would help to at least partially pay for storage

Problem is

- Anthropogenic CO₂ would come over long period of time at constant rate (t/year)
- > CO₂ EOR process requires less and less CO₂ as it stars to be backproduced and cycled
- There must be large scale storage project supporting several EOR applications

CCS fulfils ecological goal, but "wastes" energy used to compress CO_2 and it's effectiveness to displace oil.

EOR recovers more oil and would help to at least partially pay for storage

Problem is:

- > Anthropogenic CO_2 would come over long period of time at constant rate (t/year)
- > CO₂ EOR process requires less and less CO₂ as it stars to be backproduced and cycled
- There must be large scale storage project supporting several EOR applications

CCS fulfils ecological goal, but "wastes" energy used to compress CO_2 and it's effectiveness to displace oil.

EOR recovers more oil and would help to at least partially pay for storage

Problem is:

- > Anthropogenic CO_2 would come over long period of time at constant rate (t/year)
- > CO₂ EOR process requires less and less CO₂ as it stars to be backproduced and cycled
- There must be large scale storage project supporting several EOR applications

CCS fulfils ecological goal, but "wastes" energy used to compress CO₂ and it's effectiveness to displace oil.

EOR recovers more oil and would help to at least partially pay for storage

Problem is:

- > Anthropogenic CO₂ would come over long period of time at constant rate (t/year)
- > CO₂ EOR process requires less and less CO₂ as it stars to be backproduced and cycled
- > There must be large scale storage project supporting several EOR applications 4日ト 4周ト 4 三ト 4 三ト 三 めのぐ

- Centralised transport in place that could be easily expended with capacity and be hooked up to
- One of big storage issue: over-pressurising the aquifer (low compressibility) during injection
- > One of big O&G production issues: pressure support
- Could we "link" those two together and organise "cross-flow" of water from aquifer into the reservoir...
- ... gradually going from water injection into carbonated water and CO₂ EOR?

- Centralised transport in place that could be easily expended with capacity and be hooked up to
- One of big storage issue: over-pressurising the aquifer (low compressibility) during injection
- > One of big O&G production issues: pressure support
- Could we "link" those two together and organise "cross-flow" of water from aquifer into the reservoir...
- ... gradually going from water injection into carbonated water and CO₂ EOR?

- Centralised transport in place that could be easily expended with capacity and be hooked up to
- One of big storage issue: over-pressurising the aquifer (low compressibility) during injection
- > One of big O&G production issues: pressure support
- Could we "link" those two together and organise "cross-flow" of water from aquifer into the reservoir...
- ... gradually going from water injection into carbonated water and CO₂ EOR?

- Centralised transport in place that could be easily expended with capacity and be hooked up to
- One of big storage issue: over-pressurising the aquifer (low compressibility) during injection
- > One of big O&G production issues: pressure support
- Could we "link" those two together and organise "cross-flow" of water from aquifer into the reservoir...
- ... gradually going from water injection into carbonated water and CO₂ EOR?

- Centralised transport in place that could be easily expended with capacity and be hooked up to
- One of big storage issue: over-pressurising the aquifer (low compressibility) during injection
- > One of big O&G production issues: pressure support
- Could we "link" those two together and organise "cross-flow" of water from aquifer into the reservoir...
- ... gradually going from water injection into carbonated water and CO₂ EOR?

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage in - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells
 with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage ir - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells
 with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage in - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage in - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage in - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells
 with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage in - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage in - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

The more data the merrier ... but more costly as well.

Our models could only be as good as data actually is (garbage in - garbage out)

- Some seismic is always available otherwise we would not knew that reservoir are there...
- Wells must be flexible explore (produce) inject monitor
- Costs are critical: we cant drill around to explore. We need wells with downhole gauges to measure and monitor
- Every peace of data is valuable: combined interpretation approaches.

- > government legislation and actions (we need more than just words!)
- > public awareness, acceptance and trust (public should be aware of what we do, not scared of it!)
- > cross-industrial relationships (emitter transporter user)
- > closing technological gaps (focus on applied R&D)
- > ... And finally someone who will go and do it!

- > government legislation and actions (we need more than just words!)
- > public awareness, acceptance and trust (public should be aware of what we do, not scared of it!)
- > cross-industrial relationships (emitter transporter user)
- > closing technological gaps (focus on applied R&D)
- > ... And finally someone who will go and do it!

- > government legislation and actions (we need more than just words!)
- > public awareness, acceptance and trust (public should be aware of what we do, not scared of it!)
- > cross-industrial relationships (emitter transporter user)
- > closing technological gaps (focus on applied R&D)
- > ... And finally someone who will go and do it!

- > government legislation and actions (we need more than just words!)
- > public awareness, acceptance and trust (public should be aware of what we do, not scared of it!)
- > cross-industrial relationships (emitter transporter user)
- > closing technological gaps (focus on applied R&D)
- > ... And finally someone who will go and do it!

- > government legislation and actions (we need more than just words!)
- > public awareness, acceptance and trust (public should be aware of what we do, not scared of it!)
- > cross-industrial relationships (emitter transporter user)
- > closing technological gaps (focus on applied R&D)
- > ... And finally someone who will go and do it!

- > government legislation and actions (we need more than just words!)
- > public awareness, acceptance and trust (public should be aware of what we do, not scared of it!)
- > cross-industrial relationships (emitter transporter user)
- > closing technological gaps (focus on applied R&D)
- > ... And finally someone who will go and do it!

Sample workflow

High level screening (like NPD's Atlas):

- What are the potential storage site globally (province, country, region)
- > Availability of data for those sites
- > Screening of storage capacity / integrity etc.

Sample workflow

Technical study on potential candidates

Storage

- > Capacity
- > Injectivity
- > Safety
- >

Other

- > Legislation
- > Acceptance
- > Transport
- > ..

Sample workflow

Site development

- > Well placement, injection strategy
- > Pressure relieve
- > Materials
- > Monitoring program
- > ...