

CO₂ utilisation

Roman Berenblyum

Research Director, Field Studies and New Recovery Technology International Research Institute of Stavanger

December 10, 2012

- > Differences with storage
- > Physics: miscibility, dispersion, temperature
- > Enhanced Oil Recovery
- > Enhanced Gas Recovery
- Concluding remarks

- > Differences with storage
- > Physics: miscibility, dispersion, temperature
- > Enhanced Oil Recovery
- > Enhanced Gas Recovery
- Concluding remarks

- > Differences with storage
- > Physics: miscibility, dispersion, temperature
- > Enhanced Oil Recovery
- > Enhanced Gas Recovery
- Concluding remarks

- > Differences with storage
- > Physics: miscibility, dispersion, temperature
- > Enhanced Oil Recovery
- > Enhanced Gas Recovery
- Concluding remarks

- > Differences with storage
- > Physics: miscibility, dispersion, temperature
- > Enhanced Oil Recovery
- > Enhanced Gas Recovery
- > Concluding remarks

 CO_2 EOR is a great way to utilise the energy of compressed CO_2 stream and it's ability to recover CO_2 . Pure CCS is technically a waste of this energy.

Yet technical questions need to be looked upon and me might need to look at big picture!

CO₂ requirement for EOR is not constant with time: CO₂ will breakthrough and need to be recycled

 CO_2 EOR is a great way to utilise the energy of compressed CO_2 stream and it's ability to recover CO_2 . Pure CCS is technically a waste of this energy.

Yet technical questions need to be looked upon and me might need to look at big picture!

CO₂ requirement for EOR is not constant with time: CO₂ will breakthrough and need to be recycled

 CO_2 EOR is a great way to utilise the energy of compressed CO_2 stream and it's ability to recover CO_2 . Pure CCS is technically a waste of this energy.

Yet technical questions need to be looked upon and me might need to look at big picture!

CO₂ requirement for EOR is not constant with time: CO₂ will breakthrough and need to be recycled

 CO_2 EOR is a great way to utilise the energy of compressed CO_2 stream and it's ability to recover CO_2 . Pure CCS is technically a waste of this energy.

Yet technical questions need to be looked upon and me might need to look at big picture!

 CO_2 requirement for EOR is not constant with time: CO_2 will breakthrough and need to be recycled

Transport phenomena

- > Viscous forces
- > Diffusive forces
- > Gravity forces
- > Capillary forces
- > Mobility control

CO₂ specific aspects

- > Three non-aqueous phases
- Chemical interaction with reservoir rock
- > Supercritical behaviour

Compositional aspects

- > Swelling of oil
- Condensing / vaporising gas drive
- Miscibility development -IFT effects
- > Miscibility in water

- > Reservoir
 - compaction/dilation
- > Sealing faults
 - > Cap rock integrity

Transport phenomena

- > Viscous forces
- > Diffusive forces
- > Gravity forces
- > Capillary forces
- > Mobility control

CO₂ specific aspects

- > Three non-aqueous phases
- Chemical interaction with reservoir rock
- > Supercritical behaviour

Compositional aspects

- > Swelling of oil
- > Condensing / vaporising gas drive
- > Miscibility development -IFT effects
- > Miscibility in water

- compaction/dilation
- > Sealing faults
- Cap rock integrity

Transport phenomena

- > Viscous forces
- > Diffusive forces
- > Gravity forces
- > Capillary forces
- > Mobility control

CO₂ specific aspects

- > Three non-aqueous phases
- > Chemical interaction with reservoir rock
- > Supercritical behaviour

Compositional aspects

- > Swelling of oil
- Condensing / vaporising gas drive
- Miscibility development -IFT effects
- Miscibility in water

- compaction/dilation
- > Sealing faults
- > Cap rock integrity

Transport phenomena

- > Viscous forces
- > Diffusive forces
- > Gravity forces
- > Capillary forces
- > Mobility control

CO₂ specific aspects

- > Three non-aqueous phases
- Chemical interaction with reservoir rock
- > Supercritical behaviour

Compositional aspects

- Swelling of oil
- Condensing / vaporising gas drive
- Miscibility development IFT effects
- Miscibility in water

- > Reservoir compaction/dilation
- > Sealing faults
- Cap rock integrity

Compositional aspects:

- > CO₂ may evaporate hydrocarbons into mobile CO₂-rich phase;
- > Oil viscosity reduces with dissolution of CO₂
- > Oil formation volume factor increases by 40-70% due to oil swelling with dissolution of CO₂;
- Interfacial tension on the oil-water contact reduces in the presence of CO₂ in both phases.

Miscibility in water:

- CO₂ is soluble in water much higher solubility than for methane or nitrogen (additional safe storage);
- > CO₂ dissolution in water increase aqueous viscosity and density.

Chemical interactions

> Chemical reactions with CO_2 may increase permeability in sandstones by 5-15%, in carbonates and dolomites by 6-75%. $\leftarrow \bigcirc$

Compositional aspects:

- > CO₂ may evaporate hydrocarbons into mobile CO₂-rich phase;
- > Oil viscosity reduces with dissolution of CO₂;
- > Oil formation volume factor increases by 40-70% due to oil swelling with dissolution of CO₂;
- > Interfacial tension on the oil-water contact reduces in the presence of CO₂ in both phases.

Miscibility in water

- > CO₂ is soluble in water much higher solubility than for methane or nitrogen (additional safe storage);
- > CO₂ dissolution in water increase aqueous viscosity and density.

Chemical interactions

> Chemical reactions with CO_2 may increase permeability in sandstones by 5-15%, in carbonates and dolomites by 6-75%. $\leftarrow 6$

Compositional aspects:

- > CO₂ may evaporate hydrocarbons into mobile CO₂-rich phase;
- Oil viscosity reduces with dissolution of CO₂;
- > Oil formation volume factor increases by 40-70% due to oil swelling with dissolution of CO₂;
- Interfacial tension on the oil-water contact reduces in the presence of CO₂ in both phases.

Miscibility in water

- > CO₂ is soluble in water much higher solubility than for methane or nitrogen (additional safe storage);
- > CO₂ dissolution in water increase aqueous viscosity and density.

Chemical interactions

> Chemical reactions with CO_2 may increase permeability in sandstones by 5-15%, in carbonates and dolomites by 6-75%. $\leftarrow 6$

Compositional aspects:

- > CO₂ may evaporate hydrocarbons into mobile CO₂-rich phase;
- Oil viscosity reduces with dissolution of CO₂;
- Oil formation volume factor increases by 40-70% due to oil swelling with dissolution of CO₂;
- > Interfacial tension on the oil-water contact reduces in the presence of CO₂ in both phases.

Miscibility in water:

- CO₂ is soluble in water much higher solubility than for methane or nitrogen (additional safe storage);
- > CO₂ dissolution in water increase aqueous viscosity and density.

Chemical interactions

> Chemical reactions with CO_2 may increase permeability in sandstones by 5-15%, in carbonates and dolomites by 6-75%. \bullet

Compositional aspects:

- > CO₂ may evaporate hydrocarbons into mobile CO₂-rich phase;
- Oil viscosity reduces with dissolution of CO₂;
- Oil formation volume factor increases by 40-70% due to oil swelling with dissolution of CO₂;
- > Interfacial tension on the oil-water contact reduces in the presence of CO₂ in both phases.

Miscibility in water:

- > CO₂ is soluble in water much higher solubility than for methane or nitrogen (additional safe storage);
- > CO₂ dissolution in water increase aqueous viscosity and density.

Chemical interactions

> Chemical reactions with CO₂ may increase permeability in sandstones by 5-15%, in carbonates and dolomites by 6-75%.

Compositional aspects:

- > CO₂ may evaporate hydrocarbons into mobile CO₂-rich phase;
- Oil viscosity reduces with dissolution of CO₂;
- Oil formation volume factor increases by 40-70% due to oil swelling with dissolution of CO₂;
- > Interfacial tension on the oil-water contact reduces in the presence of CO₂ in both phases.

Miscibility in water:

- > CO₂ is soluble in water much higher solubility than for methane or nitrogen (additional safe storage);
- CO₂ dissolution in water increase aqueous viscosity and density.

Chemical interactions

> Chemical reactions with CO₂ may increase permeability in sandstones by 5-15%, in carbonates and dolomites by 6-75%.

Compositional aspects:

- > CO₂ may evaporate hydrocarbons into mobile CO₂-rich phase;
- Oil viscosity reduces with dissolution of CO₂;
- Oil formation volume factor increases by 40-70% due to oil swelling with dissolution of CO₂;
- > Interfacial tension on the oil-water contact reduces in the presence of CO₂ in both phases.

Miscibility in water:

- > CO₂ is soluble in water much higher solubility than for methane or nitrogen (additional safe storage);
- CO₂ dissolution in water increase aqueous viscosity and density.

Chemical interactions:

> Chemical reactions with CO₂ may increase permeability in sandstones by 5-15%, in carbonates and dolomites by 6-75%.

III CO₂ injection significantly increase precipitation of heavy hydrocarbons like asphaltines - this must be investigated.

To evaluate applicability of the CO_2 to particular field an analytical package like SWORD could be used

Analytical model accounts only for miscibility development

To evaluate applicability of the CO_2 to particular field an analytical package like SWORD could be used

EOR: analytic screening. Expert system

EOR: analytic screening. Worldwide database **III** IRIS

EOR: analytic screening. Analytical simulation **III** IRIS

Performance prediction → Advanced process input

EOR: analytic screening. Analytical simulation **III** IRIS

- > Blackoil model may be used for quick evaluation of immiscible process.
- Modern compositional simulations often allow lots of functionality. It is important:
 - Understand the physics of the process.
 - Concentrate on the governing forces and choose the tool which can handle them correctly
 - Use simpler correlations that fit to the data and knowledge you
 have rather than some 20-parametric model from which you can
 determine only 1 parameter.

- Blackoil model may be used for quick evaluation of immiscible process.
- Modern compositional simulations often allow lots of functionality. It is important:
 - Understand the physics of the process.
 - Concentrate on the governing forces and choose the tool which can handle them correctly
 - Use simpler correlations that fit to the data and knowledge you
 have rather than some 20-parametric model from which you can
 determine only 1 parameter.

- > Blackoil model may be used for quick evaluation of immiscible process.
- Modern compositional simulations often allow lots of functionality. It is important:
 - Understand the physics of the process.
 - Concentrate on the governing forces and choose the tool which can handle them correctly
 - Use simpler correlations that fit to the data and knowledge you
 have rather than some 20-parametric model from which you can
 determine only 1 parameter.

- > Blackoil model may be used for quick evaluation of immiscible process.
- Modern compositional simulations often allow lots of functionality. It is important:
 - Understand the physics of the process.
 - Concentrate on the governing forces and choose the tool which can handle them correctly
 - Use simpler correlations that fit to the data and knowledge you
 have rather than some 20-parametric model from which you can
 determine only 1 parameter.

- > Blackoil model may be used for quick evaluation of immiscible process.
- Modern compositional simulations often allow lots of functionality. It is important:
 - Understand the physics of the process.
 - Concentrate on the governing forces and choose the tool which can handle them correctly
 - Use simpler correlations that fit to the data and knowledge you have rather than some 20-parametric model from which you can determine only 1 parameter.

Three HC-phase flow

Simulating lab scale results: building block for a pilot model

Interaction with reservoir rock

Simulating lab scale results: building block for a pilot model CT-scan

core measurements in DTU showed that carbonated water creates up to 1cm long wormholes:

Yet the injectivity into the core as a function of time *decreased*

$$CaCO_3(s) + CO_2(aq) + H_2O \rightleftharpoons Ca(HCO_3)_2$$

Precipitation of *CaCO*₃ and associated pore blockage dominated over wormhole creation effect!

Simulating lab scale results: building block for a pilot model CT-scan

core measurements in DTU showed that carbonated water creates up to 1cm long wormholes:

Yet the injectivity into the core as a function of time *decreased*

$$CaCO_3(s) + CO_2(aq) + H_2O \Rightarrow Ca(HCO_3)_2$$

Precipitation of *CaCO*₃ and associated pore blockage dominated over wormhole creation effect!

Simulating lab scale results: building block for a pilot model CT-scan

core measurements in DTU showed that carbonated water creates up to 1cm long wormholes:

Yet the injectivity into the core as a function of time *decreased*

$$CaCO_3(s) + CO_2(aq) + H_2O \rightleftharpoons Ca(HCO_3)_2$$

Precipitation of *CaCO*₃ and associated pore blockage dominated over wormhole creation effect!

Simulating lab scale results: building block for a pilot model CT-scan

core measurements in DTU showed that carbonated water creates up to 1cm long wormholes:

Yet the injectivity into the core as a function of time *decreased*

$$CaCO_3(s) + CO_2(aq) + H_2O \rightleftharpoons Ca(HCO_3)_2$$

Precipitation of *CaCO*₃ and associated pore blockage dominated over wormhole creation effect!

Simulating lab scale results: building block for a pilot model

Those effects were successfully modeled with STARS:

Mobility control: Foam

Simulating lab scale results: building block for a pilot model We can

simulate a large set of experiments at different conditions using the same set of simulation parameters:

Questions regarding scaling those results up to reservoir level are being looked upon

Complex phase behaviour requires elaborate laboratory study:

- > Interaction between CO₂ and oil: miscibility development, changes in phase properties (swelling), precipitation
- If mobility control agents are to be used lab studies are needed as well
- Same goes for interaction with reservoir rock

Complex phase behaviour requires elaborate laboratory study:

- > Interaction between CO₂ and oil: miscibility development, changes in phase properties (swelling), precipitation
- If mobility control agents are to be used lab studies are needed as well
- > Same goes for interaction with reservoir rock

Complex phase behaviour requires elaborate laboratory study:

- > Interaction between CO₂ and oil: miscibility development, changes in phase properties (swelling), precipitation
- > If mobility control agents are to be used lab studies are needed as well
- > Same goes for interaction with reservoir rock

Complex phase behaviour requires elaborate laboratory study:

- > Interaction between CO₂ and oil: miscibility development, changes in phase properties (swelling), precipitation
- If mobility control agents are to be used lab studies are needed as well
- > Same goes for interaction with reservoir rock

- > CO₂ solubility in aqueous phase (and change of it's properties)
- > CO₂ diffusion through the aqueous phase
- Temperature gradient in the reservoir, reservoir cooling due to cold CO₂ injection
- > Geochemical reactions
- > Stress (pressure) dependent reservoir properties
- Compositional effects, dispersive mechanisms

- > CO₂ solubility in aqueous phase (and change of it's properties)
- > CO₂ diffusion through the aqueous phase
- Temperature gradient in the reservoir, reservoir cooling due to cold CO₂ injection
- > Geochemical reactions
- > Stress (pressure) dependent reservoir properties
- Compositional effects, dispersive mechanisms

- > CO₂ solubility in aqueous phase (and change of it's properties)
- > CO₂ diffusion through the aqueous phase
- > Temperature gradient in the reservoir, reservoir cooling due to cold CO₂ injection
- > Geochemical reactions
- > Stress (pressure) dependent reservoir properties
- > Compositional effects, dispersive mechanisms

- > CO₂ solubility in aqueous phase (and change of it's properties)
- > CO₂ diffusion through the aqueous phase
- > Temperature gradient in the reservoir, reservoir cooling due to cold CO₂ injection
- > Geochemical reactions
- > Stress (pressure) dependent reservoir properties
- > Compositional effects, dispersive mechanisms

- > CO₂ solubility in aqueous phase (and change of it's properties)
- > CO₂ diffusion through the aqueous phase
- > Temperature gradient in the reservoir, reservoir cooling due to cold CO₂ injection
- > Geochemical reactions
- > Stress (pressure) dependent reservoir properties
- Compositional effects, dispersive mechanisms

- > CO₂ solubility in aqueous phase (and change of it's properties)
- > CO₂ diffusion through the aqueous phase
- > Temperature gradient in the reservoir, reservoir cooling due to cold CO₂ injection
- > Geochemical reactions
- > Stress (pressure) dependent reservoir properties
- > Compositional effects, dispersive mechanisms

- > Improved area and vertical sweep
- Improved mobility control during gas injection
- Insufficient gas resources for gas injection
- > Improved microscopic displacement
- > Gas disposa
- > Attic oi
- > Cellar oil

- > Improved area and vertical sweep
- > Improved mobility control during gas injection
- Insufficient gas resources for gas injection
- > Improved microscopic displacement
- Second Second
- > Attic oil
- > Cellar oil

- > Improved area and vertical sweep
- > Improved mobility control during gas injection
- > Insufficient gas resources for gas injection
- > Improved microscopic displacement
- > Gas disposal
- > Attic oil
- > Cellar oil

- > Improved area and vertical sweep
- > Improved mobility control during gas injection
- > Insufficient gas resources for gas injection
- > Improved microscopic displacement
- > Gas disposal
- > Attic oil
- > Cellar oil

- > Improved area and vertical sweep
- > Improved mobility control during gas injection
- > Insufficient gas resources for gas injection
- > Improved microscopic displacement
- Sas disposal
- > Attic oil
- > Cellar oil

- > Improved area and vertical sweep
- > Improved mobility control during gas injection
- > Insufficient gas resources for gas injection
- > Improved microscopic displacement
- Sas disposal
- Attic oil
- > Cellar oil

- > Improved area and vertical sweep
- > Improved mobility control during gas injection
- > Insufficient gas resources for gas injection
- > Improved microscopic displacement
- Sas disposal
- > Attic oil
- > Cellar oil

EOR: WAG

EOR Project

A compositional, dual porosity reservoir model accounting for various (viscous, gravity, capillary, diffusion forces) transfer mechanisms, solubility in water is constructed.

We account for changing porosity and permeability as a function of pressure.

Geochemical reactions are incorporated.

Importance of different effects is studied, different injection scenarios evaluated.

EOR Project

CO₂ can be injected (re-injected) into gas reservoir for pressure support

Gravity stable injection downflank to avoid breakthrough

Contamination of the produced gas with the CO_2 is the main risk

In case of antropogenic CO_2 stream impurities may provide additional challenge... or benefits... or both

CO₂ can be injected (re-injected) into gas reservoir for pressure support

Gravity stable injection downflank to avoid breakthrough

Contamination of the produced gas with the CO_2 is the main risk

In case of antropogenic CO₂ stream impurities may provide additional challenge... or benefits... or both

CO₂ can be injected (re-injected) into gas reservoir for pressure support

Gravity stable injection downflank to avoid breakthrough

Contamination of the produced gas with the CO₂ is the main risk

In case of antropogenic CO₂ stream impurities may provide additional challenge... or benefits... or both

CO₂ can be injected (re-injected) into gas reservoir for pressure support

Gravity stable injection downflank to avoid breakthrough

Contamination of the produced gas with the CO₂ is the main risk

In case of antropogenic CO_2 stream impurities may provide additional challenge... or benefits... or both

CO₂ can be injected (re-injected) into gas reservoir for pressure support

Gravity stable injection downflank to avoid breakthrough

Contamination of the produced gas with the CO₂ is the main risk

In case of antropogenic CO_2 stream impurities may provide additional challenge... or benefits... or both

CO₂ can be injected (re-injected) into gas reservoir for pressure support

Gravity stable injection downflank to avoid breakthrough

Contamination of the produced gas with the CO₂ is the main risk

In case of antropogenic CO_2 stream impurities may provide additional challenge... or benefits... or both

- > Thermal stimulation (energy)
- > Depressurisation (loss of productivity)
- Inhibitor injection (environment, costs)
- Sas exchange:
 - ca. 60% methane could be released
 - Heat of forming CO₂ hydrates > energy consumption of CH₄ dissociation

- > Thermal stimulation (energy)
- > Depressurisation (loss of productivity)
- > Inhibitor injection (environment, costs)
- Sas exchange:
 - ca. 60% methane could be released
 - Heat of forming CO₂ hydrates > energy consumption of CH₄ dissociation

- > Thermal stimulation (energy)
- Depressurisation (loss of productivity)
- > Inhibitor injection (environment, costs)
- Sas exchange:
 - ca. 60% methane could be released
 - Heat of forming CO₂ hydrates > energy consumption of CH₄ dissociation

- > Thermal stimulation (energy)
- Depressurisation (loss of productivity)
- Inhibitor injection (environment, costs)
- Sas exchange:
 - ca. 60% methane could be released
 - Heat of forming CO₂ hydrates > energy consumption of CH₄ dissociation

- > Thermal stimulation (energy)
- > Depressurisation (loss of productivity)
- Inhibitor injection (environment, costs)
- Sas exchange:
 - ca. 60% methane could be released
 - Heat of forming CO₂ hydrates > energy consumption of CH₄ dissociation

CBM:

- > CO₂ can significantly increase recovery of methane from coal beds
- > Presence of Nitrogen reduces the recovery potential
- Significant volume of CO₂ was shown to absorb prior to extended gas recovery

CO₂ could also release gas dissolved in water in some of formations.

CBM:

- > CO₂ can significantly increase recovery of methane from coal beds
- > Presence of Nitrogen reduces the recovery potential
- Significant volume of CO₂ was shown to absorb prior to extended gas recovery

CO₂ could also release gas dissolved in water in some of formations.

CBM:

- > CO₂ can significantly increase recovery of methane from coal beds
- > Presence of Nitrogen reduces the recovery potential
- > Significant volume of CO₂ was shown to absorb prior to extended gas recovery

CO₂ could also release gas dissolved in water in some of formations.

CBM:

- > CO₂ can significantly increase recovery of methane from coal beds
- > Presence of Nitrogen reduces the recovery potential
- > Significant volume of CO₂ was shown to absorb prior to extended gas recovery

 CO_2 could also release gas dissolved in water in some of formations.

Concluding remarks

Both EOR and EGR may be technically and economically feasible

It is important to study and verify especially compositional variations There are other questions remaining:

- $>\,$ CO $_2$ source (volume required is varying with time) and costs
- > Materials, capacity
- > Legislation

Concluding remarks

Both EOR and EGR may be technically and economically feasible

It is important to study and verify especially compositional variations. There are other questions remaining:

- $>\,$ CO $_2$ source (volume required is varying with time) and costs
- > Materials, capacity
- > Legislation

Concluding remarks

Both EOR and EGR may be technically and economically feasible

It is important to study and verify especially compositional variations. There are other questions remaining:

- > CO₂ source (volume required is varying with time) and costs
- > Materials, capacity
- > Legislation