

Seminar on Evaluation of CO₂ Storage Potential, ITB Bandung, 11- 12 December 2012

Classification: Internal 2012-12-04

Contents

- CCS Projects lessons learned
- Acceptance
- CCS commercialization
- How to find solutions?
 - Governments
 - Companies
- Technology development
- Closing remarks

Statoil's CCS projects

An Industrial Approach to the Climate Change Challenge

In Salah

Sleipner

1996-20042008-

2012-

Sleipner, North Sea

- CO₂ from the Sleipner field is stored in a saline sandstone aquifer
- Storage formation at 800-1100m depth, gas reservoir at ~ 3000m
- One CO₂ injector 36 meter perforation at ~1012 meter (TVD)
- Injected gas is ~98% CO₂
- >13,5Mt CO₂ have been injected since 1996 (~0,9M per annum)
- CO₂ tax (from 1992) the main incentive

CO₂ Plume outline

In Salah, Algeria

- In Salah is multiple gas field development project in central Algeria (JV with Sonatrach and BP)
- CO₂ contents in the gas fields ranges between 1% and 9%
- CO₂ is separated from the gas and injected into the down-dip aquifer of the Carboniferous sandstone at Krechba (1900m)
- CO₂ Injection started in 2004 and since then over 3.8 million tonnes of CO₂ have been stored
- A comprehensive monitoring programme has been developed In Salah JIP
- Pipeline specifications and climate awareness

Snøhvit, Barents Sea

- Snøhvit LNG project, in the Barents Sea offshore Norway
- CO₂ is captured onshore and transported in a ~140 km subsea pipeline to a subsea template
- The CO₂ is injected at a depth of 2600m into the saline sandstone formations (below the gas reservoir)
- Injection of CO₂ started in 2008, at a rate of ~ 80 t/hr
- Gradual rise in reservoir pressure indicated limited injection rate/capacity
- Well intervention operation successfully completed May 2011
- CO₂ tax the main incentive

The CO₂ Value Chain

Statoil's main expertise

CO₂ EOR

CO₂ Storage

CO₂ owner

- Emitter (coal)
- Capture facility

Transport facilities dedicated or dimensioned for additional volumes

- Pipeline
- Vessel

Multiple storage sites possible for large volumes

- Abandoned fields
- Saline formations

CCS - not fully accepted yet

Potential barriers or enablers		Expected time until solved	
	International (I), Regional (R), National (N)	< 2 years	2-5 years
UNFCC-IPCC National Inventories	N, I	•	•
Kyoto Protocol (CDM and JI)	T I	•	0
UNCLOS	T I	•	•
London Convention and Protocol	T I	•	•
OSPAR	R	0	•
Trans-boundary movement and/or damage	T.	•	•
The Aarhus Convention	T I	•	•
EU ETS	R	•	•
EU enabling legal framework	R	•	•
UK regulations and CCS	N		•
Norway regulations and CCS	N	0	•
Long-term liability	N, R, I	•	•
Risk assessment methods	1		•
Risk acceptance, including site approval criteria	1	•	-
Monitoring and verification	T I	•	0
Public support	T I	•	0
Accounting and certification of credits	T. T.	•	•
Costs and economics	T .	•	0
Incentives	I/R/N	•	0
Technology maturity	The second second	•	•

- Political issues
- Legal issues
- Scientific issues
- Technology and cost issues
- Public acceptance

Source: DnV

CCS Commercialisation

Making business out of CO₂

CO₂ capture, transport and storage

- Developing business storing 3rd party CO₂
- Use of CO₂ for enhancing oil recovery EOR

Kyoto Mechanisms – business development

- Capturing business opportunities through Kyoto mechanisms
- Contribute to sustainable, climate friendly industry practices – flaring reduction

How do find solutions?

Governments

- Accept the global climate challenge
- Global agreements
 - New Kyoto Agreement?
 - Cap and Trade
 - International policies (storage)
- National incentives
 - Cost recovery/ tax incentives
 - Emission quotas
- National penalties
 - Taxes, emission caps,

<u>Industry</u>

- Accept the global climate challenge
- Establish clear industrial positions
- Technology development
 - Cost reduction
 - Qualification and scaling
- Risk taking market positioning
- Cooperation vs competition
- Industry academia government

What can we afford - cost and/or consequences

Technology development needed

- To reduce cost
- To upscale & increase capacity
- To test & implement
- To build trust & comptence

- Mainly capture
- CCS value chain
- CCS value chain
- Storage

CO₂ Value Chain Research & Development

- Some CO₂ value chain research projects:
 - Amine technology
 - Carbonate technology
 - Combustion processes
 - Mass transfer equipment
 - Pre combustion technology
 - Ceramic material technology and oxyfuel
 - CO₂ transport and injection
 - CO₂ storage accept
 - CO₂ subsurface
 - CO₂ fundamental properties

Tecnology Center Mongstad - Ambitions

- Test, verify and demonstrate CO₂ capture technology owned and marketed by vendors
 - verify safe and stable continuous operation
 - identify and assess critical equipment
- Reduce cost, technical, environmental and financial risks
 - develop and validate modelling tools
 - minimise energy demand and other operating costs
 - reduce capital costs
- Encourage the development of market for CO₂ capture technology

TCM Owners

Other potential partners to be invited

"Need high price on CO₂"

Helge Lund to UN Climate Summit:

"As an industry leader, I am aware of only one solution which can yield results quickly enough

placing a high price on CO₂"

- Will speed up development of new carbon emissions reducing technologies
- The challenges are complex and demanding. Finding sustainable solutions is a matter of urgency
- Would bring about sufficient results because production would become more efficient and energy forms releasing less carbon dioxide would become more competitive
- A new global framework must take into account the fact that contribution opportunities vary from country to country

Concluding Remarks

- Incentives necessary to make CCS happen
- Both governments and industry have a role to play
- Binding global agreements and joint industry positions awaited
- Can we afford the consequences?
- Place a high price on CO₂

