Development of Donghae-1 Gas Field, Offshore Korea

30 March 2004
KIGAM (Korea Institute of Geoscience & Mineral Resources)
KNOC (Korea National Oil Corporation)

The 3rd Workshop of the Cambodia PPM Case Study
Donghae-1 Gas Field

Reservoir Location

Water Depth
Distance from Shore

Sectional View
DEVELOPMENT OF DONGHAE-1

- Geophysical Prospecting
- Data Processing & Interpretation
- Exploration Well
- Failure
- Location of Appraisal Well Preliminary Feasibility Study
- Appraisal Well
- Reserve Estimation
- Feasibility Study
- Commercial Development
- Economic Feasibility
- Development Options

The 3rd Workshop of the Cambodia PPM Case Study
Table of Presentation

• Introduction
• Deliverability Analysis
• Development Options
• Compositional Simulation
• Production Optimization
• Production Facilities
• Concluding Remarks
DELIVERABILITY ANALYSIS

DST Data Analysis

- DST & Deliverability Analysis
 - DST Data
 - Reservoir Properties
 - Horner Plot
 - Type Curve Matching
 - Radius of Investigation
 - Wellbore Storage Effect
 - Estimation of Deliverability

<table>
<thead>
<tr>
<th>DST No.</th>
<th>Target Layer</th>
<th>Gauge Depth (ft)</th>
<th>Net Pay Thickness (ft)</th>
<th>Deliverability Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>V DST#2</td>
<td>B4</td>
<td>8366.14</td>
<td>103.8</td>
<td></td>
</tr>
<tr>
<td>V DST#3</td>
<td>B2</td>
<td>7685.83</td>
<td>51.7</td>
<td></td>
</tr>
<tr>
<td>V-1 DST#2</td>
<td>B3, B4</td>
<td>7866.44</td>
<td>137.4</td>
<td></td>
</tr>
<tr>
<td>V-1 DST#3</td>
<td>B2</td>
<td>7781.27</td>
<td>48.4</td>
<td>Flow After Flow Test</td>
</tr>
<tr>
<td>V-2 DST#1</td>
<td>B4</td>
<td>8014.07</td>
<td>92.7</td>
<td></td>
</tr>
<tr>
<td>V-2 DST#2</td>
<td>B3</td>
<td>7923.85</td>
<td>28.3</td>
<td>Modified Isochronal Test</td>
</tr>
<tr>
<td>V-2 DST#3</td>
<td>B2</td>
<td>7843.44</td>
<td>42.3</td>
<td></td>
</tr>
</tbody>
</table>
DELIVERABILITY ANALYSIS

Gorae V (DST#2)

DELIVERABILITY TEST

Flow After Flow Test

Actual Data
Stabilized Deliverability Line

$q_{sc} = C(p_R^2 - p_{wf}^2)^n$

DELIVERABILITY TEST

<table>
<thead>
<tr>
<th>Pressure Transient Test</th>
<th>Deliverability Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (md)</td>
<td>37.49</td>
</tr>
<tr>
<td>s^*</td>
<td>4.50</td>
</tr>
<tr>
<td>p^* (psi)</td>
<td>3608.79</td>
</tr>
<tr>
<td>$r_{inv.}$ (ft)</td>
<td>853.92</td>
</tr>
<tr>
<td>t_{ws} (hrs)</td>
<td>0.0021</td>
</tr>
</tbody>
</table>
DELIVERABILITY ANALYSIS

DST Results

- Excellent agreements between *type curve matching method* and *Horner method*
 - Permeability: moderately ranged from 23.0 to 65.3 md
 - Skin factor: 4.64 to 21
 - AOF: 21.2 to 152.8 MMSCFD

- Substantial productivity: more than 60 MMSCFD
 - V-2 (DST #2): 21.2 MMSCFD
DEVELOPMENT OPTIONS

Considerations

• Engineering Data
 ✓ Reserve, Rock and Fluid Properties

• Gas Sales Specifications
 ✓ Marketplace, Supply, Price

• Design Specifications
 ✓ Temperature, Pressure, Processing Capacity of Facilities

• Environmental Data
 ✓ Weather, Subsea Condition

• Economic Parameters
 ✓ Cost of Capital, Operating Expenses
DEVELOPMENT OPTIONS

Selection Process

• 1st Stage: Identification of All Feasible Development Options
 ✓ Substructure System Type
 ✓ Drilling Methods

• 2nd Stage: Selection of Favorable Process
 ✓ Option Screening
 ✓ 24 Production Options

• 3rd Stage: Optimized Development Concept
 ✓ Selection of Preferable Process Option
1) Identification of Development Options

Development Option

- Drilling
 - Permanent Platform Facilities
 - Dry Trees
 - Tender Assist Drilling
 - Dry Trees
 - Mobile Rig Drilled
 - Wet Trees

- Substructure
 - Floating
 - Fixed
 - None
 - Mobile Production Unit
 - Jacket
 - Semi-Submersible
 - FPSO
 - Jack-Up

- Processing & Export
 - All Offshore
 - All Onshore
 - Part Processing Offshore & Onshore
 - Full Processing Offshore
 - Wellstream Transfer to Shore
 - Korean Grid
 - Power Plant
 - Domestic Users

Components
- Strategies
 - Facilities Elements
- Gas Sales Location

The 3rd Workshop of the Cambodia PPM Case Study
DEVELOPMENT OPTIONS

2) Screening

Brainstorm Exercise

Level 1: Separator, Compression, Dehydration, Dewpointing, Condensate stabilization

Level 2: Position Selection of Each Equipment

Level 3: Optimized Production Process Selection

Technical Screening

24 Options

Economic Screening

8 Options

Selection

8 Options

DEVELOPMENT OPTIONS

3) Diagram of Preferred Process Scheme

OFFSHORE FACILITIES
- GAS COMPRESSION
- GAS DEHYDRATION
- BULK WATER SEPARATION
- LIQUID DEHYDRATION
- WATER

PIPELINE
- GAS DEWPOINTING
- SLUG CATCHER
- CONDENSATE STABILIZATION

ONSHORE FACILITIES
COMPOSITIONAL SIMULATION

Objectives

• Phase I
 ✓ Estimation of the gas and condensate reserves (GIIP) of Donghae-1 Gas Field

• Phase II
 ✓ To evaluate the field’s development including optimal well locations, various sensitivities and water coning & partially penetrating wells
COMPOSITIONAL SIMULATION

Reservoir Properties

EOS Modeling
- 11 Components (CO2, N2, C1~C6, C7+)
- 5 Pseudo-Components
 (Non-HC, C1, C2/C3, C4/C5, C6+)

Capillary P (Pc) : SCAL

Relative Permeability

Dew-point Phase Diagram

Gas Water Pc

Gas Water kr (Corey Eq.)
COMPOSITIONAL SIMULATION

Model Grid System

- Grid: 47x43x15
- Layers: C1, B1, B2, B3/4
- Constant Thickness

C1: Structure/Isopach/Grid B1 Reservoir B2 Reservoir B3/4 Reservoir
COMPOSITIONAL SIMULATION

Base Case Run

Gas & Condensate Production vs. Time

Gas & Condensate Rate vs. Cumulative Gas Production

Condensate Yield, Water Cut & Average Reservoir Pressure

Base Case Results
- Ultimate Gas Recovery: 142 Bcf (68% of GIIP)
- Period of Production Plateau: 6 years
- Condensate Recovered: 1.2 MMbbl (37% of In-Place)
- Water Production Less Than 1.7 bbl/MMscf
COMPOSITIONAL SIMULATION

Sensitivity Analysis – 13 Cases

- Permeability
 - Production Performance vs. Horizontal Permeability
- Gas Initially In-Place
 - Production Performance vs. GIIP
- Surface Operating Pressure
 - Production Performance vs. FWHP
- Plateau Production Rate
 - Production Performance vs. Field Rate
- Strength of Aquifer
 - Aquifer Strength Sensitivity
 - Effect of Aquifer Strength & Rate on Recovery
- Effect of k_v and Selective Well Completion
COMPOSITIONAL SIMULATION

Compositional Simulation Results

• Probable Reserve of Donghae-1 (Gorae V & V-3 Field):
 - 208 Bcf of Gas, 1.77 MMbbl of Condensate
 - Minimum FWHP of 700 psi & Minimum Allowable Gas Well Rate of 5 MMscf/day Assumed

• 4 Wells Required in the 4 Zones:

• Retrograde Condensation:
 - 2.5 MMbbl of condensate to remain in the reservoir in a liquid state at the end of primary depletion.
 - 1% of HCPV, immobile and no effect on gas deliverability

• Due to the modest k, the Aquifer Strength Weak
 - Insensitive to Plateau Rate, GIIP

• Relatively high k_v/k_h
 - No Effect on the Ultimate Gas Recovery, regardless of penetration
Integrated Network Model

PRODUCTION OPTIMIZATION
PRODUCTION OPTIMIZATION

Integration of Reservoir and Surface Model

Compositional Fluid Model
- Gas-Condensate Flow
- Peng-Robinson Cubic EOS (1976)
- Flash Calculation
- Gas (g) & Condensate (L) Fugacity f_i

$$\ln \left(\frac{Z_i}{Z_i^p} \right) = h \frac{Z_i - 1}{b} - \ln (Z_i - B) - \frac{A}{2.82843B} \left[\frac{2\Psi - h}{\Psi} \right] \ln \left(\frac{Z_i^p + 2.414B}{Z_i^p - 0.414B} \right)$$

Subsurface Reservoir Model
- Multi-Component Tank Model
- Assumptions
 - Homogeneous, Isotropic, Cylindrical Reservoir
 - No-Flow Boundary Condition
 - No Water & Condensate Flow
- Cumulative Gas Production

Multi-Phase Pipeline Flow Model
- Vertical Pipeline (Production Well) – PIPESIM
- Horizontal Pipeline – Multiphase Flow Model
- Vertical & Horizontal Flow Patterns

Pipeline Network Model
- PIPESIM (Build 26, 1999)
- Transport Pipeline, Production Line, Riser
- Branch System
- Modeling of Separator, Pump, Compressor
Production Optimization

Production Allocation & Compressor Installation

- **Allocation of Gas Production**

- **Pressure Profile at Separator**

- **Cum. Gas Production at Separator**

- **Cum. Condensate Pro. at Separator**

Production Scenario
- Total Production Rate: 50 MMscf/D
- BD12, BD13 Line: Detour Line for Emergency
- Platform Minimum Pressure: 500 psia
- Allocation of Optimized Gas Production Rate

Optimized Production Rate
- Plateau Period: 3900 Days
- Compressor Installation: 2000 Days (5.5 yrs)
- Cumulative Gas Production (During Plateau Period)
- Cum. Condensate Pro. (During Plateau Period)
PRODUCTION FACILITIES

- Subsea Production Facilities
- Offshore Production Facilities
- Pipeline
- Onshore Structures
CONCLUDING REMARKS

- Donghae-1 Gas Field, Offshore Korea
 - Production Options
 - DST
 - Reservoir Simulation
 - Integrated Network Modeling
 - Facility Design

 Gas & Condensate Production (2004)

- We are willing to actively involve in PPM Case Studies: collaborative work with Host Countries
The End
Thank You.