Objectives of This Session:

Q. **What are the objectives of this session on tight gas reservoirs?**

A. **Exploration and development strategies for low permeability gas reservoirs — technical challenges and solutions:**
 - Low permeability gas resource assessment.
 - Identification of sweet spots and fracture prediction.
 - Identifying risks and rewards.
 - Drilling, fracturing, underbalanced drilling, horizontal wells, etc.
 - Production technologies and future outlook.
 - Case studies.

Exploration is really the essence of the human spirit.

Frank Borman (Astronaut) (1928-)

From: Rushing, J.A. (private communication).
Reservoir Characterization: Integration Approach

Q. Process for characterizing low permeability gas reservoir models?
A. A comprehensive process must include all data possible, as well as the integration of expertise for interpretation and analysis.

You cannot build character and courage by taking away a man's initiative and independence.
Abraham Lincoln (1809-1865)

Reservoir Interpretation: Performance Analysis

Q. What technology is best for reserves estimation (decline curve analysis, rate transient analysis, pressure transient analysis)?
A. MULTIPLE analyses must be used. A "model-based" analysis/forecast is strongly encouraged — a reservoir model must be used in the analysis, interpretation, forecast of production performance.

To succeed in life, you need two things: ignorance and confidence.
Mark Twain (1835-1910)
Factors Influencing Reservoir Performance:

Q. What are the factors which influence reservoir performance in tight gas reservoir systems?

A. The primary factors include:
- Reservoir permeability (and geologic distribution of permeability).
- Reservoir pressure and temperature.
- Well completions — hydraulic fracturing, horizontal wells, etc.
- Geomechanical effects (including abnormal (high/low) pressure).
- Water saturation and vaporized water component.

For most tight gas reservoirs, the reserves are proportional to the length of the hydraulic fracture created to stimulate the well.

Various Industry Personnel (consensus statement)

Inversion of Reservoir Performance:

Q. What is inversion?

A. You know the output(s), and you want to estimate the underlying model and/or properties of the model:

\[
\text{Data} = \text{Physics(Reservoir)} + \text{Error}
\]

\[
\text{Inversion (Interpretation)}
\]

\[
\text{Reservoir} = \text{Physics}^{-1}(\text{Data}) + \text{Uncertainty} + \text{Bias}
\]

I do not have much patience with a thing of beauty that must be explained to be understood.

Charlie Chaplin (1889-1977)
Hydraulic Fracture Stimulation of Tight Gas Reservoirs:

Q. Can we "map" the path of a hydraulic fracture in a tight gas reservoir?

A. Sort of — microseismic imaging has become popular, but it is an expensive operation, and the interpretation is more art than science.

It is odd how learned persons fail to see that new terms and definitions are apt to mean new doubts and litigation.

Frederick Pollock (English Judge) (1845-1937)

Q. Do we understand fracture geometry?

A. Not really ...

It is better to have enough ideas for some of them to be wrong than to be always right by having no ideas at all.

Edward de Bono (English Psychologist) (1933)
Appendix: Energy Issues (for reference)

Energy Summary Data: (EIA 2002 data and some 2003 estimates — http://www.eia.doe.gov/emeu/cabs/)

<table>
<thead>
<tr>
<th>Country</th>
<th>CH Reserves (B STB)</th>
<th>CH Production (MMSTB/D)</th>
<th>CH Consumption (MMSTB/D)</th>
<th>Net CH Imports (MMSTB/D)</th>
<th>CH Wells Drilled in 2002/total wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>18.3</td>
<td>3.39</td>
<td>5.26</td>
<td>1.87</td>
<td>> 70,000² (total)</td>
</tr>
<tr>
<td>United States</td>
<td>22.4</td>
<td>5.7 (8.8³)</td>
<td>19.9</td>
<td>11.2</td>
<td>4964/531,610²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Conventional Gas Reserves (tcf)</th>
<th>Gas Production (tcf/EYr)</th>
<th>Gas Consumption (tcf/EYr)</th>
<th>Gas Imports (tcf/EYr)</th>
<th>Gas Wells Drilled in 2002/total wells</th>
<th>Unconventional Gas Reserves (tcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>53.3</td>
<td>1.07</td>
<td>1.07</td>
<td>—</td>
<td>—</td>
<td>1060²</td>
</tr>
<tr>
<td>United States</td>
<td>183</td>
<td>19.4</td>
<td>22.3</td>
<td>4.0</td>
<td>1594/7358,76²</td>
<td>1685⁵/1200⁶</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Coal Reserves (B sl t mt)</th>
<th>Coal Production (B sl t mt/EYr)</th>
<th>Coal Consumption (B sl t mt/EYr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>126.2</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>United States</td>
<td>275.1</td>
<td>1.13</td>
<td>1.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Electric Generation Capacity (Gigawatts)</th>
<th>Electricty Generation (B Kilowatt-hr)</th>
<th>Thermal Electricity Generation (Percent)</th>
<th>Nuclear Electricity Generation (Percent)</th>
<th>Hydroelectric Electricity Generation (Percent)</th>
<th>"Renewable" Electricity Generation (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>318</td>
<td>1420</td>
<td>74.5</td>
<td>0.6</td>
<td>24.9</td>
<td>—</td>
</tr>
<tr>
<td>United States</td>
<td>813</td>
<td>3889</td>
<td>74</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes: ¹Includes "refinery gains", ²Oil and Gas J. (24 Dec. 2001), ³IPAA Research and Information webpage, (http://www.ipaa.org/info/InYourState/), ⁴Coalbed Methane (Central Coal Mining Research Institute (China)), ⁵Coalbed Methane — Past, Present, and Future (EIA: http://www.eia.doe.gov/petroleum/gas/natural_gas/analysis_publications/maps/maps.htm#Top), ⁶Tight Gas Sands (http://www.mines.edu/research/pgs/).
Appendix: Energy Issues (for reference)

Oil Production History for the United States — 1949-2002
Petroleum Production History for China — 1980-2002
Data from US DOE EIA (http://www.eia.doe.gov)

Legend: US Oil Variables
- US Oil Consumption (MSTB/D)
- US Oil Production (Total) (MSTB/D)
- US Oil Production (Crude Oil) (MSTB/D)
- US Oil Imports (MSTB/D)
- US Oil Production (Plant Liquids) (MSTB/D)

Legend: China Oil Variables
- China Oil Consumption (MSTB/D)
- China Oil Production (MSTB/D)
- China Oil Imports (MSTB/D)

Note: Differences in US Oil Production, Consumption, and Imports is cited as "refinery gain" by DOE-EIA.

Appendix: Energy Issues (for reference)

Oil Production History for China — 1980-2002
Data from US DOS-EIA (http://www.eia.doe.gov)

Legend: China Oil Variables
- China Oil Consumption (MSTB/D)
- China Oil Production (MSTB/D)
- China Oil Imports (MSTB/D)

Note: China oil consumption increasing at ~ 260,000 STBD/yr.
China oil production increasing at ~ 46,000 STBD/yr.
China oil imports increasing at ~ 260,000 STBD/yr.
Appendix: Energy Issues (for reference)
Appendix: Energy Issues (for reference)

Energy Consumption History for the United States — Marchetti-Nakicenovic Fraction Function
(International Institute for Applied Systems Analysis (cited in Oil and Gas Journal 26 January 2004))
Data from US DOE-EIA (http://www.cia.doc.gov)